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Local Methods for Constructing Stationary 
Distribution Functions of Systems of Stochastic 
Differential Langevin-Type Equations: 
Noise Influence on Simple Bifurcation 
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The influence is considered of two additive correlated noise effects on a two- 
dimensional quadratic-nonlinear system describing the behavior of two 
hydrodynamic modes. Using the method of Gaussian approximation, local 
characteristics of the distribution function are calculated, which are used to 
construct the global distribution function with the aid of the method of fraction- 
rational approximations. It is shown that for a system at whose bifurcation 
point the asymptotic stability is lost, in an expanded space of parameters 
(bifurcation parameter in the absence of noise plus noise parameters) there 
appears an instability zone within which the stationary distribution function 
does not exist. The effect of noise correlation on the stationary characteristics of 
the system is studied. 

KEY WORDS: White noise; bifurcation; dynamical systems; hydrodynamic 
system; Gaussian approximation; functional-rational approximation; stationary 
distribution function. 

1. I N T R O D U C T I O N .  PERTURBATION A N D  LOCAL M E T H O D S  
OF SOLVING THE F O K K E R - P L A N C K  EQUATION 

The local methods  of o rd inary  differential equa t ion  analysis are powerful 
tools for constructing,  for m a n y  general si tuations,  a quali tat ive picture of 

the behavior  of systems described by such equations.  (~) At tempts  to use 
these methods  for stochastic Langevin- type  equat ions  meet with difficulties 
that limit the possibilities of such generalizations.  Once white-noise-type 

f luctuations have been in t roduced into the system, any local p roblem turns  
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into a global one due to the presence in such fluctuations of arbitrarily high 
intensity bursts, which makes the system "feel" whatever remote boun- 
daries. This feature of fluctuations leads to the appearance of transitions 
even between very distant equilibrium states and to their mutual influence. 
Practically all attempts to use the local method of describing distribution 
functions by the Fokker-Planck equation are based on the procedure that 
in quantum mechanics received the name "nonlinearization, ''(2) consisting 
in representing the distribution function in the form P---Ne U, where U is 
sought as Taylor expansions in the vicinity of given points (equilibrium 
states in the absence of noise, etc.) characteristic of the system. Although 
such "nonlinearization" has been used to seek wave functions since the late- 
1940s, (2) such representation was apparently first proposed for diffusion 
processes by Krasovskii. (3) He also analyzed the question of the con- 
vergence of Taylor expansions for U in some situations. The main difficulty 
consists in the fact that it is necessary to validate the procedure of cutting 
off the infinite chain of equations for the expansion coefficients U. This 
seems not to have been strictly done, and as is often the case, in 
applications one is orientated toward physical reasons for the obtained 
results. The cutoff of the infinite chain leads to the so-called "shifted" 
estimates for the true sought values. The results obtained by such a method 
have been analyzed in Ref. 4. 

The investigation of systems near the instability threshold 
corresponding to the change of equilibrium states under the action of fluc- 
tuations has resulted in the concept of phase transitions induced by exter- 
nal noise. This effect was obtained theoretically for a number of exactly 
solved models ~5 9~ found experimentally ~w~3) in a number of physical 
systems and consists in the fact that the equilibrium positions of the system 
in the absence of noise differ from the position of the stationary dis- 
tribution function maxima which are interpreted as new equilibrium states; 
the noises deform the bifurcation surfaces in the parameter space passing 
through which the system changes it qualitative behavior (e.g., from the 
equilibrium position a limiting cycle is created, two equilibrium positions 
merge, and so on). If, in addition, we take into account the fact that when 
noise is introduced into the system the dimensionality of the parameter 
space increases by the number of parameters characterizing the noise, there 
appear new bifurcation surfaces passing through which the system goes to 
states which in the absence of noise did not exist at all. The local method 
has been used to solve these problems. Stratonovich ~14) constructed the 
main term of local expansion of U for the general case of one equilibrium 
position and for several equilibrium positions in the presence of symmetry. 

In the case of small fluctuations and for the two-dimensional systems 
of Langevin-type equations studied here [Eq. (1), Section 3] the c o m -  
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putational scheme is as follows: representing the stationary distribution 
function to be sought in the form 

P = N -~ exp( - Uo/e + U~ + eU2 + . . .)  

and substituting it into the appropriate Fokker-Planck equation [Eq. (2), 
Section 3] and equating the terms with the same power of e, we obtain the 
chain of partial differential equations in UI, l =  0, 1,..., (of first order this 
time). Write the first two: 

S11(U(oa))2/2 + U12 U(ol)U(o 2) + N22 ( U(02))2/2 = U(ol)K1 + U(2)K2 (A) 

(Nil U(o 1 ' +  N12 U(o 2) - K, ) U~ 1 )-[- (N,2 U(1) -~ N= U~2)~ K:) U~ 2) 

= Ki 1) + K (2) - (N11 U(o n) + 2N12 U (12) -+- N22 U(22))/2 (B) 

Here we use the notation c~f/Oxi = f(;), i = 1, 2. 
In the work of Tolstopyatenko and Schimansky-Geier, (15) an 

additional "nonlinearization" procedure is proposed, which explicitly takes 
into account the probability density flux vorticity. This procedure, in 
principle, makes it possible to go beyond the scope of both the case of 
small fluctuations considered in Ref. 14 and the case of the presence of 
potentiality conditions where the stationary Fokker-Planck equation has 
an exact solution. The cutoff procedure of Ref. 15 was carried out on the 
principle of leaving a minimum number of Taylor expansion coefficients of 
the vorticity function required for the solvability of the corresponding 
equations for the expansion coefficients of U. The question of the bias of 
bifurcation points obtained from this theory has not been studied, but 
correlation has been made with the perturbation method of Ref. 14. I't is 
shown that in this approximation the results coincide. The algebraic 
equations for Taylor coefficients of local expansion of the main asymptotic 
term U/e do not contain any arbitrary parameters, which suggests that the 
approach of Ref. 15 is asymptotically equivalent to the approach of Ref. 14. 
On the other hand, from this it follows that using such a method, it is 
impossible, generally speaking, to satisfy any predetermined boundary 
conditions for P. It turns out that P found in such a manner for most 
important cases of steady states satisfies the so-called "natural" boundary 
conditions, i.e., it is equal to zero together with its derivatives. This just 
makes it possible to use the obtained solutions as physically adequate ones. 

In the cases where it is necessary to satisfy boundary conditions 
other than "natural" ones, a different method should be used. Ventzel 
and Freidlin ~ created a strict mathematical theory of constructing 
distribution functions of diffusion processes with diffusion tensor elements 
uniformly tending to zero. The terms of expansion in powers of e satisfy the 
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equation in partial derivatives, but already of first order, and therefore the 
possibility exists of satisfying boundary conditions other than "natural" 
ones. This method, however, is essentially nonlocal (and therefore is 
extremely complicated from the computational point of view). In Refs. 17 
and 18 a local method for constructing U was proposed. This method 
contains free parameters, by the choice of which it is possible to satisfy 
different boundary conditions or other relations superimposed on the 
sought solution (for example, it may be required that only the first n 
relations between the moments of random variables under consideration be 
fulfilled). This method explicitly takes into account the probability flow 
vorticity, as does the method of Ref. 15, but leads to recurrent chains of 
equations which may be solved sequentially. This method is appropriate in 
situations where a perturbed solution in the vicinity of the exact solution 
must be obtained. In the general case, the application of this method is 
impeded by the fact that in order to determine arbitrary constants which 
actually are local expansion coefficients of the probability flow vorticity, it 
is necessary to specify the corresponding local values, which are usually 
unknown. And attempts to associate these coefficients with the boundary 
values of the sought solution meet with great computational difficulties. 

Even in the case of small fluctuations, which has received much 
study, (14'16) there exist many computational problems. As shown in a series 
of works by Graham and T61, (19'2~ the equations for the main asymptotic 
term of expansion Uo/e(A) (which are Hamilton-Jacobi equations), are 
integrable when and only when the drift and diffusion coefficients of the 
Fokker-Planck equation satisfy the conditions of potentiality. (21/ 
Otherwise, Uo may be nondifferentiable on certain manifolds. This is due to 
the absence of a sufficient number of first integrals in the canonical 
equations of motion for the characteristics of the corresponding 
Hamilton-Jacobi equations. 

Another, more grave disadvantage of the method of U expansion in 
powers of e (which is also called the e-expansion method) is the fact that it 
is inapplicable in the vicinity of those points in the parameter space where 
the noise-free system loses its asymptotic stability. As a result, the external 
noise-induced phase transitions, which take place near the points of 
stability loss, cannot be described by such a method. The present work 
deals exactly with such a case. 

The mathematical reason why the e-expansion method is inapplicable 
in the vicinity of the point of asymptotic stability loss is the fact that the e 
power series in the form of which U is sought is in reality a reciprocal 
power series of the bifurcation parameter /~ such that the expansion term 
Un ~ e,/#m. Such a series converges quickly at large /~, i.e., far from the 
instability point, but begins to diverge somewhere in its vicinity. 
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At least for two-dimensional systems, it is possible to trace the source 
of nonanalyticity and relate it to the bifurcation type in the absence of 
noise. Let us do this. According to the ideas of catastrophe theory, the 
main qualitative peculiarities of the function are in the coefficients of its 
Taylor expansion of the lowest order. The equations for the expansion 
coefficients 

i+j=ao i 
= ~ fr,l...22...~,, oX,)*(x2 oX2) j U{1} i+ ":o V{ol}7 , ~ 1 -  -- 

are obtained by differentiating the left and right sides of (A) and (B) at the 
point {oX~, oX2}. If we choose one of the singularity points to be an expan- 
sion point (K1, K2) ] {0xl,0x2} = 0, then U~ = U~ = 0 immediately follows from 
(A), i.e., this point is a point of the Uo extremum, and the systems of 
algebraic equations in U~ ~22  are as follows: 

( U~ a:) - '  Kff + K f (  U,~/~) - *  = N o (c) 

(summation over repeated indices is meant) 

all a12 0 

a21 2all+a22 2a12 Uo n2 

0 2a21 2a22 + all  a12 Uo 122 
0 a2~ a22 / g~ 22 

I K I ~  K i l g l l  -~ K I l O  12 
i l O12 q- 2K]2 U~ + 2K~2 O12 -~- K211 022 / 

2U0~1 + 2K12U 12 + 2K~2U 22 + ~222U~2~ 
/~12U 12 71- K~22U~ 2 / 

(D) 

11...22._ 
A~ 7 7 ) = f ,  ( i+ j=n)  

Taking into account the identity Nil Uo 11 + 2N12 Uo 12 + N= 22 1 U o = 2(K, +/~2) 
following from (C), the equations in 

11... 22... 
U17 7" 
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are obtained: 

a l l  a l 2 "] { U I "] ~. { K I I -t- K 12 "] 
a21 a22,}\ U2,} t,, KI2 +/.~22} 

1 111 112 122 
_ _ _  ( N i l  U 0 n t- 2N12 U 0 + N22 U 0 "] 

112 122 222  2 \ N I 1 U o  +2N12Uo +N22U o ] 

11... 22,.. 

ft~(UIT 7" ) - - f~  

(E) 

where a 0 = UikNkj- K}. 
As is well known from catastrophe theory, the local form of the 

function at the extremum point undergoes qualitative changes when the 
determinant of the second-order derivative matrix changes sign. The form 
of the determinant for our case is very remarkable, 

det Ug = 4(Tr Ki) 2 det KJ[(Nll K~ - 1 1 2 N22K 2 -- N12K 1 + N12K~2) 

+ det N~(Tr Ki) 2] -1 

Since the numerator of this expression contains a value which is positive 
for any value of the parameters, det Ug can change its sign when either 
Tr K /o r  det K / o f  the linear part of the matrix of the system under study in 
the absence of fluctuation changes its sign. It is known from the general 
theory of two-dimensional systems (see, for examqple, Ref. 30) that this 
exhausts all the types of bifurcations taking place with the linear part 
existing. This implies that when studying the influence of noise on bifur- 
cation one should take into account at least one more term U1 in the U 
expansion in terms of e. If we could compute U1, then the extremums of 
Uo/e + U1 would give approximate values of new locations of maxima and 
minima obtained from the conditions (Uo/e + U1) (il = 0, after which U 
could be reexpanded in the vicinity of the new maxima (,xl, ,x2) and the 
determinant of the matrix of the second-order derivatives U(~ ,x2) 
computed. It would depend on N o in a nontrivial way and define new 
bifurcation surfaces in the expanded space of the noiseless bifurcation 
parameters plus noise parameters N~. 

Let us see how this program may be realized. It is obvious from 
equations (E) for the coefficients of the U1 linear part that in order to 
determine them it is necessary to know the coefficients U~ k of the cubic 
terms of the Uo expansion, which can be determined from system (D). To 
avoid awkward expressions for Ug k and for subsequent coefficients we 
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present only the expressions for the matrix determinants that should be 
other than zero for the solution of these systems to exist. Using equation 
(C), it is easy to obtain the following results: 

a i j  = UgK~( Ud k) - 1, d e t  a i j  = det K~ 

det A3 ~ = det K~[det Kj+ 2 Tr(K}) 2 ] 
(F) 

det A ~ = Tr Kj det Kj[3(Tr K}) 2 + 4 det Kj] 

det A~ = Tr Kj det Kj 

For Uo, this means only one thing: in the vicinity of noiseless steady 
states at the bifurcation point the loss of analyticity takes place, since the 
corresponding partial differential equation (A) is quite solvable in this case. 
Of course, it may turn out that when calculating Ug k according to the 
Kramer rule, det K/cancels out in the numerator and denominator due to 
certain special properties (for example, symmetry) of the system under 
study. Then it is possible to determine these values and to compute Uil, U~ 
from Eq. (E). It is seen, however, from Eq. (F) that det aij= det K}, and 
therefore the solutions for U~ and U ~ do not exist either, for the same 
reason in the absence of certain special properties at the bifurcation point. 

Nondifferentiability of Uo in the vicinity of a certain manifold was first 
established by Ventzel and Freidlin (16) and studied by Graham and 
T~I (19'2~ for a number of particular systems. It is possible, however, to go 
further and estimate the qualitative behavior of U1. If we reject the expan- 
sion of U0, U~ into the Taylor series in favor of solving the partial differen- 
tial equations (A), (B) by the method of characteristics, then, as is shown 
in Refs. 16, 19, and 20, the solution for U0 can be obtained for all values of 
the parameters. The equation for characteristics for Ua is of the form 

dxi/dt = N i k  U(o to) - Ki 

the matrix of their linear part, as follows from (C) and the first equation of 
(F), being U~o~K~(U~k) -~, whose determinant and trace both coincide with 
those of K/. If we take into account that the solution of (B) is obtained by 
integrating the right-hand side, which is an increasing function of xi, over 
characteristics (G), it becomes clear that the solution for U1, which is 
bounded at t--. ~ ,  may be obtained only in the case when the trajectories 
of system (G) do not extend to infinity. As is well known, (3~ however, 
singularity points can lose their stability for some bifurcation types and 
the system trajectories abandon their neighborhood at t-* oo. For such 
types of bifurcation U1 ~ oo at t --* o% and it will be greater than Uo at any 
small e and at any point of the phase space. This means that for systems in 
which the noiseless bifurcation occurs passing through unstable states the 
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a-expansion method can be used only when t is finite and cannot be used to 
obtain the stationary distribution function, since in this case the U/e expan- 
sion into the E power series is not even asymptotic. The Knobloch and 
Wiesenfeld approach, ~3~) based on the expansion of U in the vicinity of the 
central manifold, cannot be used in this case either, because the latter is 
nonexistent for such situations. 

As is known from the general theory of functions, ~22) this is an 
indication of either the nonexistance of the object [i.e., U, and therefore the 
absence of a nontrivial (P ~ 0) stationary distribution function at t --* c~ ], 
or/and the presence of ~ and /x nonanalyticity points somewhere near (at 
small ~) the bifurcation point in the absence of noise. For the investigation 
of such cases the method of Gaussian approximation is adequate ~23) when 
the sought function is considered to be locally Gaussian, the normal 
distribution parameters being found from the condition of fulfilling the 
required number of equations for moments. At small e, using the Laplace 
method, ~24) this approach may be extended to more general types of 
distributions and acquire the character of a calculation of the asymptotic 
expansion in a given small parameter 6(~,/~) which is a nonanalytical 
function of e and /~. In practice, however, nonlinear equations even for 
second moments turn out to be very complicated for analysis, such that 
one is confined, as a rule, only to the Gaussian approximation. In Sec- 
tion 3, using the method of Gaussian approximation, local characteristics 
are calculated of the stationary distribution function of a two-dimensional 
dynamic system in the vicinity of the breakdown of one stable equilibrium 
position into two positions in the presence of fluctuations. It should be 
noted that for the cases of two equilibrium positions a global distribution 
function is constructed on the basis of the available data on equilibrium 
positions and the saddle point in the form of a fraction-rational 
approximation nondifferentiable on a given curve, which agrees with the 
results of Graham and Tel (19'2~ about the nondifferentiability of U at a ~ 0. 

2. THE P H Y S I C A L  S Y S T E M  U N D E R  S T U D Y  

In Sections 3 and 4 a problem taken from the hydrodynamics of 
vortex flows in ellipsoidal containments ~2s~ is studied by the above- 
mentioned methods with regard to fluctuations. Equations for v0, vl, and 
v2 of dimensionless lower modes of the flow rate 

fJo = v~ - v~ - v o + R + f o ( t )  

~1 = /)0/)1 - - / ) 1  + f l ( t )  (I) 

/~2 = - -COY2 - -  /)2 -'[- f2(t) 
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are obtained using the Galerkin procedure in the Helmholtz equation of an 
ideal incompressible fluid inside a unequiaxial ellipsoid. Here R is the 
analog of the Reynolds number, and fo, ./'1, and f2 are fi-correlated 
fluctuation sources. The use of such a single-parametric three-mode model 
was justified by GIedzer et aL ~25) and the field of application for the above 
simple model of fluctuation sources was discussed by Klyatskin. ~26) 

The results presented in the sections that follow are concerned with a 
two-dimensional particular case (I) where the component v2 is not excited. 
In new variables more convenient for calculation the system takes on the 
form 

/el = M - x 1 - x ~ + r l x l ,  :;c2= x 1 . Xg + rlx2 (II) 

where M = R - 1 ,  x l = v o - 1 ,  and x2=v~. Such a particular case 
corresponds to the Burgers model of the appearance of pulsations in the 
flow, where xl corresponds to the main flow and x2 corresponds to 
pulsations. Equations (II) belong to the class of simple nonlinear quadratic 
systems in which bifurcations in the absence of noise have received a good 
deal of study (see, for example, Ref. 27). 

For M < 0  in the absence of noise (II) has one asymptotic stable 
stationary solution {x2 = 0, x~ = M}, and for M >  0, two asymptotic stable 
stationary solutions {xl =0, x2 = +~/M}; for M =  0, i.e., at the point of 
mergence, system (II) is unstable. 

In Section 3, the local characteristics of the sought distribution 
function are calculated by the method of Gaussian approximation. These 
characteristics are used in Section 4 to construct the global distribution 
function by the method of fraction-rational approximations. Interpreting 
the stationary distribution function maxima as new steady stationary 
states, bifurcation surfaces are constructed in the expanded space of the 
parameters (M,  N ~ ,  N~2, N22} (where N~, NI2 , N22 are the intensities and 
correlation of noises r/x 1, qx2) at whose intersection the bistable and 
monostable regimes in (II) are changed by instability. The dependence is 
presented of the position of the distribution function maxima on the 
fluctuation powers and the correlation between them in each of these 
regions. 

3. T H E  M E T H O D  OF G A U S S I A N  A P P R O X I M A T I O N  IN 
S I N G U L A R L Y  P E R T U R B E D  F L U C T U A T I O N  P R O B L E M S  

In this section, the method of Gaussian approximation is used to seek 
the local characteristics of the two-dimensional system of Langevin 
equations 

~l=K,(x~,x2)+q,(t), ~2=K2(xl,x2)+~(t) (1) 
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where t h and r/2 are white noises in Stratonovich sense with 

(rh(t) rlj(t'))=eNo6(t'-t), i , j = l , 2 ,  at e ~ 0  

Primary consideration will be given to the situation where the noise-free 
system (1) has one or two steady states, depending on the value of the 
bifurcation parameter. System (II) is the simplest system of such type (with 
lowest quadratic-type nonlinearity). At the same time it has all the main 
characteristic features of the problems with a nonunique equilibrium 
position. If the maxima of the stationary distribution function are con- 
sidered as equilibrium states of a noisy system, the main goal of the local 
approach is to investigate the equilibrium position change depending on 
the powers, the noises introduced into the system, and the correlations 
between them, as well as to construct a new bifurcation diagram in the 
parameter space expanded at the cost of the parameters of fluctuation 
perturbations. 

The Fokker-Planck equation for the stationary distribution function 
satisfying system (1) has the form 

-2 t N l ' ~x  21+ 2 N ' 2 ~ x - ~ - ~  -I- N 2 2 O x ~ ] = ( K 1 P  ) ~- -~x 2 ( K 2 P ) (2) 

Let us seek the solution of (2) in the form P = N exp[ - U(xl, x2)/6(/3, M)], 
where 6(0, M ) =  0 is a given unknown function (generally speaking, a non- 
analytical one) of ~ and of the bifurcation parameter M of the problem of 
(II). Then, at small e, according to the Laplace method, ~24) the main con- 
tribution to any integrals ~ P(x~, x2) q~(xl, x2) dxl dx2 will be made by the 
vicinity of the minimum U and, in the case of the presence of an Xl, Xz- 
nondegenerate quadratic part in U, the fundamental term asymptotic at 
e--, 0 will be determined by this part only. The contribution of higher 
degrees of the U expansion in xl, x2 will be made by the following terms of 
the asymptotic expansion in 6. Confining ourselves further to the main 
asymptotic terms, we shall consider U as an x~, xz-quadratic form only. 
This corresponds to the so-called Gaussian approximation. ~23) Thus, in this 
case 

1 exp[ 1 1 
P = 2rt(det 212/) 1/2 - ~ (x - m) r ~ / -  ~(x - m) (3) 

where 

{.m2) \M12 M22/ 
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are, respectively, the mean vector and the dispersion matrix. To determine 
them, five equations are required. Let us obtain them by substituting (3) 
into (2) and integrating with prior multiplication by the corresponding 
factors xi or x ix j ,  

( K i )  = 0  (4) 

( K ~ x j )  + ( K j x i )  + N o. = 0 (5) 

Here i =  l, 2 and 

( ' "  "} = f R 2 P ( x l ,  x2)(" " ") dXl dx2 

How should one understand Eqs. (4) and (5) in the case where the 
system has several equilibrium positions? In this case the sought 
distribution function may be represented locally in the form of (3). Then 
the means in Eqs. (4) and (5) should be treated as conditional means in the 
regions of maxima. However, due to the presence of the small parameter e, 
the main contribution to the main asymptotics of mean values, according 
to the Laplace method, (24) looks as if integration were made over the entire 
plane R 2. Writing Eqs. (4) and (5) separately for each maximum and 
solving them, we obtain local values m and M. Then the local information 
thus obtained may be used to construct approximations of the global 
distribution function. This will be done below with the aid of fraction- 
rational approximations. 

We now turn to the analysis of system (II). Let us begin with the case 
of one equilibrium position in the absence of noise: M < 0. 

In the system of coordinates where the noise-free equilibrium position 
is zero, the equations (II) take on the form 

.~ = - - x - -  y2  + rll,  j~= M y  + x y  + q2 (6) 

where x = Xl - M and y = x2. 
In this case the equalities for the moments of (4), (5) are of the form 

m, + (m2) 2 + M22 = 0 
(7) 

M . m 2  + ml  .m2 + M~2=O 

(ml)  2 + MH + ml �9 M22 + m2. MI2 + m2(ml .m2 + M12) - eNal/2 = 0 

( M -  1)(rn i -rn 2 + mlz)  + m2[(ml) 2 + mxl ]  - m2[(m2) 2 + M2z] 

- 2m2 - M22 + 2ml �9 M12 + eN12 = 0 

M[(m2) 2 + M22] + m~ [(m2) 2 + M22] + 2m2.  M12 + eN22/2 = 0 

(8) 
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Here the known expressions for the Gaussian means are used: 

(x2>=(ml)2+Mll;  ( xy )=ml .m2+M12;  (y2)=(m2)2-l.-M22 

( x 3 ) = ( m l ) 3 + 3 m l . M l l ;  ( x 2 y ) = m i . M n + 2 m l . M 1 2 + ( m l ) 2 . m 2  

( x y 2 ) = m l  .M22+ 2m2.M12+m1- (m2)2; (y3)=(m2)3 + 3m2.M22 

(9) 

The matrix M elements may easily be expressed in terms of the vector 
elements m: 

Mll = - M . m l  + e(N11 + N22)/2 

MI2 = - ( M +  ml) "m2 (10) 

M22 = - [ m l  + (m2) 2] 

which must satisfy the system of equations 

2(m2) 3 + [M(1 - M) + e(Nll + N=)/2 + 3(1 - M) ml 

-- 2 ( m l )  2] m2 -1- eN12 = 0 (11 ) 

( m l )  2 q- 2 [ M +  (m2) 2 ] m 1 + 2 M ( m 2 )  2 - gN22 = 0 

System (11) is of fifth order and cannot be solved in radicals. However, the 
sought roots may be found with the aid of the fixed-point theorem. Indeed, 
of all the roots of system (11), we need only the one that tends to zero at 

--+ 0, which corresponds to the tendency of the maximum position to the 
equilibrium position of the noise-free system, and the tendency of aT/(10) 
to zero provides the tendency of p to the a-function. Again, if we express 
the sought root m2 by the Cardano formula in terms of the coefficients of 
the first equation of (11), 

where 

m2 = - 2 ( -  p/3)1/2 cos(e/3 + rt/3) (12) 

p = I-M(1 - M) + e(Nn + N=)/2 + 3(1 - M) ml - 2(ml)2]/2 

and cos ~ =  -eN12/4[-(p/3)3] 1/2, and express ml by the known formula 
in terms of the coefficients of the second equation, 

m l =  -[M-k(m2)2]-{[M+(m2)212-kaN22-2M(m2)2} 1/2 (13) 

and substitute (12) into (13) and (13) into (12), the problem of finding the 
sought root will be reduced to finding the fixed point of mapping 
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ml =f(m~) and m 2 = q~(m2). Estimations and numerical calculations show 
that the derivative of the functions f and ~0 at small M and e are small and 
therefore the iterations of the above mappings beginning with zero values 
of ml and m 2 quickly converge. Practically the first iteration brings us to 
the region of the root. Taking this into account, we obtain for the first 
approximation of m~ and m 2 

1ml  = - [ M  + (gN12 /2 )  2/3 ] 

_ { [ M + ( e N ~ z / 2 ) 2 / 3 ] 2 + g N 2 z - 2 M ( e N 1 2 / 2 ) 2 / 3 }  '/2 (14) 

l m 2  = - ( e N 1 2 / 2 )  l/~ 

It can easily be seen from (14) that ~ml and lm2 really tend to zero at 
e--+ 0, but they are not e-analytical in the vicinity of e = 0. [-In general, 
neither is their behavior described by power functions with rational indexes 
whose presence in the expressions of (14) is the result of the approximate 
procedure of seeking the roots.] 

The condition of the existence of a nontrivial stationary solution is the 
condition of the positivity of the dispersion matrix determinant, whose 
elements are given by expressions (10): 

MIIM22-  (M/2) 2 > 0 (15) 

Figure 1 shows the family of curves separating the regions of positivity and 
negativity of Det 29/in the {e, M} parameter space for different relations 
between Nll, N22, and N12.  It is seen from this family of curves that the 
main qualitative effect of fluctuations is the appearance of an instability 
region instead of one point M = 0, i.e., at any small e there exists an Mcr 
such that at ]M] < tMcrP the nontrivial state is absent from the system. 

We now turn to the case of M > 0. In the absence of noises for these 
values of M there are two asymptotically stable equilibrium positions with 

coordinates {xl=0,  x 2 = ~ } ,  {xl=0,  x 2 = - ~ } .  Let us first 
calculate the Gaussian approximation parameters for each equilibrium 
position. For this purpose we rewrite Eq. (11) in coordinates in which the 
noise-free equilibrium state is at zero. It is sufficient to do this only for one 
equilibrium position, since by virtue of the existing symmetry in the 
equations of (11) all the expressions for the second equilibrium position are 
obtained simply by changing the sign at ~ and N12. Thus, in the coor- 

dinates xl = x, x2 = y + x/-M, Eqs. (II) assume the form 

- x - 2 J y - y 2 + , . .  116) 
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Fig. i. Bifurcation diagram in the {e, M} parameter space for the right-hand maximum, for 
different values of the Nn/N22 ratio: (a)0.26, (b)1.31; at different values of correlation 
coefficient R: (1) -0.9,  (2) -0.5,  (3)0, (4) 0.5, (5) 0.9. For the left-hand maximum the sign 
before R must be reversed. The instability zone is inside the curves. 

With the use of (9), Eqs. (4), (5) give 

M l l  -~ Mml + e(N11 + N=)/2 

M12 = --N/"M m l - - m l m 2  (17)  

M22 = - m l  - 2 ~ rn 2 - (rn2) 2 

F o r  m I and  rn2 we ob ta in  the system of non l inear  equa t ions  

rn 2 + [ M  + 4 ~ m 2 + (m2) 2 ] ml  - aN22/2 = 0 

(m2) 3 + 3 ~ - M  (m2) 2 + [ 2 M  + e(U n + U = ) / 4  + ml(M + 3)/2 - (ml)  2] m2 

+ ~-M [a(Ull + N22)/4 + ( M  + 3)m 1/2 - (ml)2]  + eN12/2 = 0 

(18) 

Proceeding as in the case of M < 0, we reduce the problem of calculating 
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the roots of system (18) tending to zero at e ~ 0  to the problem of 
calculating the fixed points of the mappings 

M + 4 x / - M m 2 + ( m 2 )  2 {I-M+x/-Mmz+(m2)212+2~N22} m 
(19) m l =  2 2 

m 2 = -x / -M + 2 ~ cos(ct/3) 

where 

p = M - e (NH + N22)/4 - m~ (M + 3 )/2 + (m~)2 

cos ~ = -eN12/4(p/3)3/2 

(20) 

As in the case of M < O, it is verified numerically that the derivatives of 
mappings (19) and (20) at small e and M are very small, which permits us 
to write as a first approximation 

M + 4 x/--M (om2) + (om2) 2 { [ M + xf-M (om2) + (om2)212 + 2eN22 } '/2 
lml = 2 2 

i rn 2 = -x/--~ + 2 [(op)/3 ] i/2 cos(c~/3) 

where 

(21) 

orn~ = - M / 2  + (M 2 + 2~N22)~/2/2 

om2 = -x / -M + 2 [(op)/3 ] 1/2 cos(oC(3) 

oP = M -  e(NH + N22/4) - ( M +  3)(oml)/2 + (om~) 2 

cos(o~) = -eN,2/4(oP/3 ) 3/2 

The condition of (15) is in this case the condition of the existence of 
one of the maxima whose local characteristic is described by expressions 
(17), (21). As in the case of M <  0, there appears an instability zone within 
which a stationary solution does not exist. Note, however, an interesting 
fact: the presence of correlation (N12 ~ 0) breaks the system symmetry such 
that if at N12=0 the right-hand and left-hand maxima disappear 
simultaneously when passing through the curve separating the stability and 
instability zones, at N~2 r  there exist such points in the space of the 
parameters {M, e} that when, say, the left-hand maximum has disappeared 
while the right-hand one remains, this position is reversed as the sign of 
N~2 changes (Fig. 1). 

Besides the positions of the maxima, a very important characteristic 
point of the stationary distribution functions with a nonunique maximum 
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is the saddle point located at low noise near the unstable equilibrium 
position. The local characteristics of the distribution function at this point 
are important in calculating the times of being in one of the equilibrium 
positions, (28) since at low noise, the system makes, with most probability, 
transitions through the vicinity of this point. Unfortunately, we cannot 
make use of the methods of Gaussian approximation to calculate the local 
characteristics of the saddle point, as done above for the investigation of 
the maxima, because the use of the Laplace method is restricted to 
functions of the form of (3) with det 37/>0. And the saddle point is of 
saddle character (det 37/<0), and the infinite-limit integrals, to whose 
calculation the problem in the Laplace method is reduced, diverge. 

However, one may use the circumstance that to obtain the Gaussian 
approximation parameters of (3) one may use not only xi  and x i x j ,  but 
any functions [if only there exist integrals in Eqs. (4) and (5)]. Let us 
assume that in the vicinity of the noise-free unstable equilibrium position 
the distribution function is of the Gaussian form c e x p [ - ( x - s )  T 
S - l ( x - s ) ] ,  where the quadratic form in the exponent index is not, 
however, sign-defined and, as is known, it has the saddle form. Using linear 
orthogonal substitution of variables 

,)(,1) 
- s i n e  cose /ky2 /  \ - s  e / k y 2 /  

we may reduce this form to (Y l -  m l)Z/2M11- ( Y 2 -  m2)2/2M22 �9 Then, for 
the functions defining Mu,  M 2 2 ,  ml, m2, and s and c we choose the 
functions Yl exp[-(Yx-m1)Z/M11] and y i y j e x p [ - ( y l - m l ) 2 / M l l ] .  For 
such functions all the integrals in expressions (4), (5), as may easily be 
seen, will already exist and represent Gaussian means with the function 
e xp[ - (Yl  - ml)Z/2M11 - (Y2 - mz)2/2M22] �9 Performing all the operations 
of averaging the Fokker-Planck equation (2) for such functions with the 
distribution function whose local form is given above, we obtain for 
Eqs. (11) in coordinates (6): 

-3~211ml + ~ 2 1 2 m 2 + c M z 2 - s m l m 2 + c ( m 2 ) 2  + ~ m ~ N H / M 1 1 = O  (22) 

- Rlzm1 + (R22 - 2J~11) m2 - 2sM22 - s M l l  - s ( m l )  2 - 2s(m2) 2 

+ cmlm2  + e m z N l l / m l l  = 0 (23) 

-4/~11 Mll - 4sm2M22 - 4~211m 2 + 2K12ma - m 2  --  4srn~rn2 

+ 2crn1(M22 + rn~) + eNd1 m ~ / M l l  + 2eN-11 = 0 (24) 
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)~'12[-M22 "+- (m2) 2] - R 1 2 [ M l l  + (ml)2] + (/~22- 3/~11)ml m2 

- 3sml [M22 + (m2) 2] + m2c[3M22 + (m2) 2] 

+ (cm2-sml)[3M11 + (ml) 2] +gNllmlrn2/Mll-eN12 = 0  (25) 

- 2 ( R H  - K22) M =  - 2R12m~ m2 - 2(Rll - R=)(m2) 2 - 6sm2M2a 

+ cml M22 --  SMllm 2 q- cml(m2) 2 - s(rnl )2 rn 2 _ 2s(m2)3 

+ eNH(m2)2/M,~ + eN11 M221M,~ + eN22 = 0 (26) 
where 

M s 2 - c  z - ( M + I ) c s )  
1~= - (  M + I ) cs M c 2 -  s 2 J 

is the matrix of the linear portion of the Fokker-Planck equation drift 
vector, and 

( NllC:2-2csN12q-N22s2 NllCSq-N12(c2-s2)-N22cs) 
~(=~\NllCS+N12(c2-s2)-N22cs N11s2+2CSNla+N22c 2 

is the diffusion matrix on orthogonal transformation of the coordinates T. 
The solution of this very cumbersome system can be obtained at small e by 
the iteration method used to solve the systems of (11) and (18). Let us seek 
a solution of the system of equations (22)-(26) for which lim~+ o MI~, M22, 
ml, m 2 = 0  and l i m ~  o s =  1 and therefore l i m ~ o  c = 0 .  This solution will 
locally describe a distribution function whose saddle point tends in the 
absence of noise to the unstable equilibrium position, and the transfor- 
mation matrix ;? changes to the matrix of the 

(;  ;) 
orthogonal rotation through 7~/2, which corresponds to the form of the 
saddle phase picture of the noise-free system (6). (25) [One can immediately 
make sure that the limiting values of the sought solutions satisfy, in the 
limit of e --+ O, the system of (22)-(26).] 

Choosing from (24) oS = 1, 0c = 0 as a zero approximation, we obtain 

(oMl,) = eN22/2(M + om2) (27) 

Here, ( o m l ) = 0  has been chosen. It will be seen below that this value is of 
the next order of e infinitesimal. We obtain from (26) 

2N11(M + om2) -- om2N22 
(oM22) = ~ (28) 

4(1 + 2om2)(M + om2) 

822/50/5-6-14 
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Here the values of (om2) 2 and (om2) 3 have been rejected as small compared 
to the remaining ones. 

Substituting (27)-(28) into (23), we obtain the equation for om2: 

4(om2) 3 + 2(1 + 2M)(om2) 2 + [ 2 M +  g (N ,  + Ne2)](omz) 

+ 2eMNll + gN22 = 0 (29) 

the root tending to zero at e--+ 0 being taken as the solution: 

om2  Scos(   3) 
where 

P--  37-.4 - - g (Nl l  + N22) 

q 
cos ~ = 2(p)3/2 

1 [1-5M+4M2 g(N11+N22)J 
q = ~ ( 1  + 2 M )  9 2 

2MN11 + N22 
+ e  

4 

The first approximation for c is found from Eq. (25), 

lc = -eUt2/{(1 + M)[oM22 - oMll + (0m2) 2] 

+ omz[3(oM22 + oMll) + (om2)2] } (30) 

It is seen from (30) that 0c is close to zero at small NI2 (weak correlation 
noises) and at small N=.  Due to the presence in the denominator of the 
difference oM22 - oM11 for another combination of parameters, it would be 
better to choose another zero approximation for s and c. Now we find from 
Eq. (22) the first approximation for ml,  

lml = lc[oM22 + (om2) 2 + (1 + M) omz]/(M- om2) (31) 

It is seen from (29) for om2 that always 0m2 < 0, so the denominator in (31) 
never becomes zero. Repeating the above procedure, we can find further 
approximations of the sought roots. The values of the dispersion matrix 
and the mean vector in the initial variables of (6) are obtained by using the 
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inverse transformation i? 1, whose parameters as a first approximation can 
be found: 

where 

S=  Sy \om2 /  

Sxy ~_~QS~: Syyl~ ~QOmll 0022)]~,--1 

p=( lc 1) 
- 1  !c 

(32) 

4. C O N S T R U C T I O N  OF THE GLOBAL 
D I S T R I B U T I O N  F U N C T I O N  BY M E A N S  OF 
F R A C T I O N - R A T I O N A L  A P P R O X I M A T I O N  

The local characteristics calculated above provide information on the 
influence of noise upon the equilibrium position coordinates and on the 
maximum half-widths. However, the local values do not provide such 
important information as the relative (relative to one another) value of 
maxima. Without knowing them, it is impossible to determine the time 
during which the system is in the vicinity of one of the equilibrium 
positions, (28) which is a very important characteristic of bistable systems as 
used in practice. 

Let us seek the global distribution function in the form Ne ~, choosing 
U in the form of a fraction-rational function such that its first and second 
derivatives at the maximum and minimum points coincide with the 
corresponding values obtained by the local analysis. The additional 
requirement placed on the form of the function U is its positive-definiteness 
at infinity. To correlate the absolute values of U at extreme points, which 
cannot be found from the local analysis, we use the values of the barrier 
heights between two wells of U, which are assumed to be approximately 
equal to the difference of the Gaussian approximation values at the saddle 
point and at the point of each maximum. We also use the fact that an 
arbitrary constant may be added to the functon, so that the absolute height 
of one of the extreme points may be fixed arbitrarily. 

The following designations are used: x~ denotes the saddle point coor- i ; denotes the right-hand maximum coordinates (21); x c dinates (32); x R 
denotes the left-hand maximum coordinates [the same formula (21) in 
which ~ is replaced by -x/-M];  U~ is the matrix inverse to the matrix 
of momenta (U= ~/ 1) at the saddle point (32); U~ is the matrix inverse 
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to the matrix of momenta at the right maximum point; and U~ is the 
matrix inverse to the matrix of momenta at the left-hand maximum point 
[-the same formula (17) in which ~ is replaced by -,~-M]. 

Let us seek the global distribution function in the form Ne v, where U 
is of the form 

I 1 ] [CR + ~9R(x- xR)] to the right ofx 0 
U= UR= 1 CR(X-Xo)+l 

[ 1 ][CL+~L(X--XL)] totheleftofxo UL= 1 ~L(X--Xo)+ l 
(33) 

The functions ~bR,L, ~9R, r, and the constants CR, c are determined from the 
conditions of coincidence of the first- and second-order derivatives with the 
corresponding local approximations P at the points x0, xL, and xR, as well 
as from the condition of U continuity at the point Xo. The functions ~bR, L 
and OR,L are chosen in the form of x i second-order homogeneous 
polynomials. Then, ~b~.L(Xo)= 0 and ~ ( x R ) =  ~L(XL)= 0, with the form of 
U being chosen such that UR(xo) = Uc(xo) = 0. Here we have made use of 
the fact that U is determined up to the additive constant. The function U is 
a continuous function twice differentiable at the point Xo with a break of 
the first and higher derivatives on the curve determined by the equation 
UR(x) = Uc(x). At low noise, as follows from the results of Ventzel and 
Freidlin (16) and Graham and T~I, 09'2~ the true distribution function 'tends 
to a function nondifferentiable on a given curve. Therefore, for the given 
case, (33) will be a good approximation. As to the study of phase 
transitions induced by external noise, the main information on the maxima 
shift and the saddle point as well as on how the bifurcation occurs 
(through the instability region in the parameter space) has already been 
obtained by the local method. Of greatest interest in constructing the 
global distribution function is finding the constants CR and CL, which 
determine the relative height of the maxima and therefore the time during 
which the system is present in the vicinity of each of them, 

Below, calculations are given for finding the parameters of UR. The 
corresponding expressions for UL are obtained by substituting R for L. 

Let us introduce the height of the "potential well" A R equal to 

zl R = U ~(xo)  - U R(X R) = U ~(xo)  

__ 1 T / l l / ' . . 1  x l ) 2  ..~. UR(Xo--XR)(X 0 -~,~R,~o- --XR)+~UR(Xo--XR) (34) 

In terms of the parameters of (33), this value is equal to 

~ , , ( x ~  - Xo) 
AR = -- ~bR(XR-- x0) + 1 CR (35) 
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The purpose of further manipulations is to obtain an algebraic equation for 
~bR(xR -- x0) in terms of which all the coefficients of the quadratic forms ~bR 
and 0R and of CR are expressed. Since xo is the extreme point, ~bR =~bR--0.~ 2 _ 
Putting now the partial second-order derivatives of UR given by expression 
(33) at the point x0 equal to the matrix elements of the moments for the 
saddle point calculated by the local method, we obtain 

Cr~ 
~b~ = (i, j = 1, 2) (36) 

CR + 4' R(Xo-- XR) 

Multiplying (36) by (x~-X~o)(X~-x~) and adding, we arrive at a chain of 
equalities 

1 1 
11 i l 2 ~ 1 2 ( . . I  1 2 2 ,~221. .2 . 2~2 

- Xo)(X R - Xo) + 5  ~ ~ '~  R - ~oJ ' t"R ",'a'R -5 CR (xR- -  Xo) + 

= CR(XR -- XO) 

I 1 - T i l t .  1 __ x l ) 2  + / T I 2 [ . . I  -1- 1/] '22/ . r .2 ..2'~2 ~ o  ,~R ~o , ~ R - - x ~ ) ( x ~ - - x ~ ) - -  ~ o  ,~R-- ~o~ 
C~ + OR(Xo - xR) 

~:0(xR) 
c ~  + OR(Xo - x~)  

So 
CR + O R ( X o -  xR) 

(37) 

whence 

~, R(Xo - xR) = & / O ( x R  - xo) - cR  (38) 

whereupon (36) is expressed in terms of ~bR(x R -  Xo) 

r = UgCR(XR-- Xo ) /&  (39) 

We now turn to the calculation of the quadratic form ~R parameters. From 
the condition that xR is the extreme point, we find 

ii i ij j _ _  j 
, _ (O/axi) ~R(XR) CR = --CR OR(XR-- xi~ +OR(xR XO) (40) 

~b R -- 
q~R(XR -- Xo) CR(XR-- Xo) 

Putting now the partial second-order derivatives of Ue given by expression 
(33) at the point xR equal to the inverse matrix elements of moments for 
the right maximum point xR, we obtain 
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u ~ = I  O~ 
[~bR(XR 2X0) %- 1] 2 

2 (3/Oxi) OR(XR~_~____~O)+.I~-- Xo)(a/axj) ~R(x,~ - Xo)] cR 

+ [ a~ ,,(x . - Xo) /ax j  O ~ + [ aO R(x ,~ - Xo)/axj] ~,~ 
[~bR(xR - Xo) + 1 ]2 

~bR(xR--x~ ~ (41) 
+ ~bR(XR-- Xo) + 1 

whence ~ may be determined. Multiplying (41) by (Xio- x~)(x{~- x~) and 
adding, we arrive at a chain of equalities 

1 /711(..1 U12(x I 1 2 2 -~ ,~o - x'~) ~ + ,~ o - xR)(Xo - xR) + ~ ~,~(~o "~ - ~,~J'~ '~ 

= uR(xo) = 3 R 

L[r 1] = 4 [~bR-~R--~o~+l] 3. 

2~bR(xR - Xo)[ (a/ax,) O R(x&-  x'~) + (a/ax=) O R(x~ - x~)] 
[r 1] 2 

~R(x~-Xo) [ ~x, r 10R(Xo--XR)-- OR(X~--X~) 

(42) 

Using the identity following from (40), 

g 
1 U~x- ~IR(X1 - -  xI )  -1- VX2~ 0R(Xg -- X 2) = 2CR (43) 

formula (38) connecting OR(Xo--XR) and (~R(XR--Xo), and formula (35) 
connecting AR and CR, we arrive at the equation for ~bR(xR--Xo): 

AROZ(xR--Xo)+(13AR+Ao)fbR(xR--xo)+6AR+Ao=O (44) 

The condition 
lira C~R(X R - -  X O )  = 0 

x R ~ x 0 

and the fact that A R < 0 make it possible to choose the desired root: 

-- 13A R - A  o -  (97A~+ 14AoAR+ A~) 1/2 
CR(XR--Xo) = (45) 

6AR 
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Now all the sought values may be expressed by means of ~bR(xR -- Xo) given 
by formula (45) in terms of the already calculated local values, which in 
turn are expressed in terms of the initial parameters of the problem. 

The general view of the sought distribution function is given in Fig. 2. 
Note that by virtue of the initial symmetry in the problem at N12 = 0, 
CR/CL= 1, both peaks of the distribution function are completely sym- 
metrical. At N12 ~ 0 the symmetry is broken and the peaks acquire different 
heights. This circumstance may be used for experimental definition of the 
fluctuation correlation in the given system. Note another important effect 
of the fluctuation correlation on the bistable behavior: at N12 = 0  both 
stable states simultaneously lose their stability. The presence of nonzero 
correlation (N12r leads to the fact that as the fluctuation power 
increases, one peak disappears sooner than the other, so that in this case 
the distribution function goes through the monostable regime before it 
disappears. 

The inequality CR r Cr, which is due to the fluctuation correlation, 
turns out to be quite essential for the limiting (~ ~ 0) behavior of the dis- 
tribution function. As shown by Moss and Welland, (29) in the case where 

Fig. 2. 

-N N 

The distribution function P for the case of M>0. (a) N12<0; (b) N12>0; 
(c) N~2 = 0. 
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the U wells are of different depths, the distribution function at the above- 
mentioned limit transition tends to the 6-function concentrated at the 
lowest maximum, and only in the case where both wells are of the same 
depth are the limit distribution functions the sum of the 6-functions 
concentrated at each maximum. This leads to the fact that in experimental 
observations of steady states of the above bistable system at very small 
correlated fluctuations the system must always find itself (at fairly long 
times of observation) only in one state, which depends on the sign of the 
correlation coefficient. 

5. C O N C L U S I O N  

The approximate solution of the two-dimensional stationary Fokker 
Planck equation obtained in the present work, which corresponds to the 
stochastic system (II), represents a piecewise-smooth approximation of the 
stationary distribution function in the nonpotential bistable case. The 
existence of such smooth approximations was revealed by Graham and 
T61, (19'2~ who proposed a technique for constructing them on the basis of 
the method of e-expansion. This method, however, is inapplicable to 
systems that are in the vicinity of the stability loss, because of the non- 
analyticity (to be more exact, nonanalyticity of a nature other than the 
simple nonanalyticity e -1 of the e-expansion method) of the solution" by 
bifurcation and noise parameters. The approximate solution obtained is 
locally Gaussian. But the quadratic form which appears as a local 
approximation of the system's "potential" is not Taylor terms up to and 
including the second order of expansion into a Taylor series. This 
"potential" does not exist near the boundary of the instability region. The 
closeness of the obtained approximate solution to the true one is 
determined in the mean (conditional mean for a bistable situation), which 
just provides the smoothness of the approximation. 

The procedure of obtaining equations for moments of (4) and (5) 
should also be commented upon. For the case of finite M and e ~ 0 the 
meaning of the values mi and M~ obtained on their basis as local charac- 
teristics of the distribution function was provided, in both monostable and 
bistable cases, by the Laplace methods. Near the instability boundary, 
however, as follows from the definition of this boundary, det M is close to 
zero and the asymptotic series in the Laplace method are no longer such. 
In the monostable case, the above-mentioned method may be looked upon 
as the replacement of the true distribution function by the closest (in the 
sense of means and dispersion closeness) Gaussian distribution function. In 
the bistable case, the situation turns out to be more complicated. The use 
of the conditional means in obtaining Eqs. (4) and (5) for the calculation of 
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local characteristics of the distribution function, and the replacement of the 
maximum region integration by the whole space integration, means implicit 
introduction of characteristic times at which the above actions are valid, 
namely, if at the initial instant of time the system was in the vicinity of one 
of the equilibrium states, its corresponding peak of the distribution 
function is formed faster than the peak near the other equilibrium state, at 
times smaller than the formation times, and the above treatment is valid. 

The use of the local information obtained in this manner for the con- 
struction of the global distribution function is equivalent to the assumption 
that in the course of further evolution toward the stationary state the 
positions of the distribution function maxima are little affected as com- 
pared to those calculated in the first stage of formation of maxima. This 
assumption looks quite plausible. The same method may be used to avoid 
such assumptions in constructing smooth approximations of stationary 
distribution functions near the point of stability loss where the differential 
properties of the solution are poor and do not permit the calculation of the 
Taylor expansion of U, but U must be chosen not in the quadratic form, 
but in the form of the fourth or higher even order. In practice, however, in 
purely analytical applications, such an approach leads to extremely great 
computational complications due to the lack of exact expressions for 
integrals in Eqs. (4) and (5) and the lack of a fairly simple coupling 
between lower and higher order momenta of the type of (9). Thus, one may 
hope that in the cases where the rebuilding of the distribution function 
occurs without merging of maxima at one point, the application of the 
Gaussian approximation will produce at least correct qualitative results. It 
is precisely such a situation that takes place for the considered example of 
two hydrodynamic modes when maxima disappear at different points of the 
phase space as the point passes in the expanded space of parameters 
through the instability boundary, i.e., without merging. 
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